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ABSTRACT 

It is shown that any plane set of constant unit width contains a semi-circle 
of radius ½, and using this a minimal univeral plane cover is explicitly cons- 
tructed. It is also shown that in an n-dimensional space" with n> 2 there are 
minimal universal covers of arbinary large diameter. 

Introduction. We shall consider subsets of real n-dimensioral Euclidean 

space E". Denote by J r ,  that class of subsets of E" which have a width in every 

direction equal to 1. If  two subsets X and Y of  E n are congruent we write X ,-- Y. 

A subset C of  E" is called a universal cover if it is closed, convex and such that 

for every subset A of E n whose diameter is less than or equal to 1 we can find a 

subset B of C such that B ~ A. Since every such set A is contained in a member 

of o,~,, it is sufficient in proving that a set C is a universal cover to vertify that 

the congruent subset B of C can be found corresponding to every set A that 

belongs to d , .  

By a m i n i m a l  universal cover is meant a universal cover of which no proper 

subset is also a universal cover. 

In the plane the diameter of  any minimal cover is less than 3 and the question 

has been asked (by V. Klee, see [23) as to whether there is a finite upper bound 

of  the diameters of compact minimal universal covers in E", depending possibly 

on n. We show that this is not  the case by proving that for any given positive 

number K and any integer n with n > 3, there is a compact minimal universal 

cover in E" whose diameter is greater than K. 

We first prove that a certain plane set is a minimal universal plane cover by 

means of  a lemma, which incidentally also shows that any set in aT" 2 contains 

a semicircle of  radius ½ (see [1]). 

§I. An explicit example of a plane minimal universal cover. In this section it is 

shown that a certain set ¥, defined explicitly, is a plane minimal universal cover. 

Y is the union of  a disc and of  a IReuleaux triangle, both of unit diameter, so 
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placed that  two of  the vertices of  the triangle are diametrically opposite points 

on the disc. See Figure 1. 

Figure 1 

I f  Yis a universal cover at all it must: be a minimal one: indeed no proper  subset 

o f  Y can contain bo th  a disc and a Reuleaux triangle each of  unit diameter.  

We shall deduce that  Y is a universal cover f rom the following lemma. 

L E n A  1. I f  Z is a plane set of unit constant width then there are two 

points on the frontier of Z, say s,t, which are at unit distance apart and such 
that of the two semicircles of radius ½ that pass through both s and t, one 

at least, does not meet the interior of Z. 
For  if this l emma were true then, since every l:oint of Z is distant at most  1 

f rom both  s and t, it would follow that  Z lies in a figure bounded by a semicircle 
on st and (on the opposite side of  st) two arcs of  unit radius and centers s and t. 

This figure is congruent  to IT. Thus Z is congruent to a subset of  Y. But any set 

whose diameter  does not  exceed 1 is contained in a set of  unit constant width. 

Hence Y is a universal cover. I t  remains to prove the lemma. 

Proof  of the lemma. By a standard approximation argument it is sufficient to 

establish the lemma when Z is a Reuleaux polygon and in what follows we consider 

this case only. 
Two vertices of  Z, say a, b, are said to be opposite if a n d  only if they are at 

unit distance apart.  In the frontier of  Z lie two circular arcs whose centers are a 

and b. They lie on one and the same side of  the line ab; we call this the positive 

side and the other side will be called the negative side. The circumcircle of  

the part  of  Z on the negative side of  ab will be denoted by Yah, its radius by rob 

(~ab is a disc). 
In any case rob ~_ ½ and we wish to establish the existence of  two opposite 

vertices a,b, for which r,b = ½. We assume that  no such vertices exist and 

show that  this leads to a contradiction. 
Any two vertices p,q on the frontier of  Z divide this frontier into two arcs, 
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Moreover ,  if p and q are not opposite, then one of  these two arcs contains no 

points opposite to p or q. The vertices of  Z on this arc other than p or q are said to 
lie between p and q. I f p  and q are opposite then by the vertices bet~veen p and q 
we mean those that  lie on the negative side of  the line pq. 

Since rpq > ½, there must ,  for  any pair of  opposite vertices p,q, be vertices 

between p and q which lie on Vp~. Define the vertices v, w such that  they lie on Vpq 

and no other vertices between p and v or between q and w lie on Vpq. Let there 
be f(p), g(q) vertices between p and v and between q and w respectively. Let 
h(pq)=min(f(p),g(q)) and z=minp ,q  h(pq). Choose opposite vertices a,b 
so that  z = h(ab) and suppose for definiteness that f ( a )  = h(ab). Then let b 1 be 
the vertex opposite a adjacent to b and a t  be the vertex opposite to bt adjacent 
t o  a .  

We consider two cases. 

CASE (i) Z = 0. 

a t  lies on Y.b (see Figure 2). bt lies outside Y~b and the line joining bt to the 

center of  Yah bisects internally the angle abia~. Hence Y.b cuts the segment b~at 
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Figure 2 

in two points a t and c, and the center of  Tab lies on the positive side of  atb t. 
Thus the part  of  Yah on the negative side of  albt, apart  f rom the point  a l ,  lies 

interior to 7a,b,. But this means that  no vertex of  Z on the negative side ofaib~ 
lies on V~,b,- This is impossible since it implies 1",, b~ = ½. 

CASE (ii) Z > 0. 

Let c be the vertex of  Z between a and b on Yob nearest to a (see Figure 3). 

Because of  the extremal property of  a,b and c and because z > 0, b,c and all 

the vertices of  Z between a~ and c must be interior points of  ~o,b,. Since b,c are 
interior to Vo,b,, of  the two parts of  rob on the two sides of  the line bc one must  
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lie interior to )'~b,. Since a~ lies on the frontier of  Ya,b, it must be that part of  yah 
on the side of bc opposite to a~. Thus all the vertices of  Z between b and c are 
interior to Va,bl" Hence all the vertices of  Z between at  and b~ are interior to 
V,,b,. Again this is impossible. 

The lemma 1 is proved. 

REU_ARK. The lemma also shows that any member of K2 contains a semicircle 
of  radius ½. For  if Z is a Reuleaux polygon and in the notation of  the lemma 
Vob = ½ then all vertices of Z on the negative side of ab lie in Yah and the frontier 
of  Z on the positive side of  ab (which is formed from circular arcs of  radius 1 
with centers at these vertices) lies outside or on the frontier of  Yah" Thus of  the 
frontier of  Yah one semicircle lies inside Z and the other lies outside Z where inside 
and outside are to be interpreted in the weak sense; i.e., frontier points of  Z can 

lie in the frontier of  V~b. 

§2. A minimal universal cover in E* of large diameter. By a ball is meant a 
closed solid sphere; for  example, a set such as {(xl, . . . ,  x,) I Y-,F= l(x~ - k3 z <_ r2} 
where (xt . . . .  ,x~) denote the coordinates of  a point in E". 

We need the following lemma. 

LEMMA. 2. There is a member W of o,~,, n > 3, such that the projection of 
W in any direction is not an (n - 1)-dimensional ball. 

Let Bo be the n-dimensional ball with center (0,0 .... ,0) and radius ½. Let Bi 
be the ball with radius 1 and center p~ where every coordinate of p~ is zero except 
the i th, and the ita coordinate is (7½ - 1)/28. Let  U be the intersection of  Bo 
and all the B~ and let V be the union of  U and all the points Pv Let W be a 

member of  o,~, such that W~  V. 
Let  Wo be the projection of Win the direction 0. By direct calculation it can be 

seen that there is a p o i n t f  on the frontier of  Wo which is the projection of  a point 
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of  the frontier of  Wthat  lies interior to B o and on the frontier of  one of  the B~. 
But this means that the frontier of  Wo in a sufficiently small neighborhood o f f  
coincides with the frontier of  an (n - 1) dimensional ball of  radius 1. Thus W0 
is not  an (n - 1) dimensional of radius ½. Since Wo ~ a~rn- 1 it follows that W0 is 
not  an (n - 0-dimensional ball. 

COROLLARY. There is a member W of a~ n such that the greatest lower bound 
of the circumradii of projections of Win all directions is greater than ½. 

The proof  is obvious by compactness arguments. 

LEMMA 3. I f  Z E K  2 and every square circumscribing Z has its sides 

bisected by the points of contact with Z then Z is a circle. 

Let a ,b  be two points of  Z distant 1 apart and such that the semicircle tQb 
joining them lies in Z. Let the center of this semicircle be p, and let q be one 
of  the points of  Z most distant from p. The line through q perpendicular to pq 
is a support line of  Z: hence by the hypothesis the support  lines of Z parallel to pq 
touch the circle of which tQb is a part. But then by hypothesis pq must be equal 
to ½. Hence Z is a circle. 

Denote by Z that member of  ~ n  such that the greatest lower bound of  the 
circumradii of projections of Z in all directions has the largest possible value. 
Let this value be R; then R > ½ .  

Construction of a universal minimal cover. Let P be the infinite prism 
lxll  < ½ , i = 1 , 2  . . . .  , n - l ,  x n > 0 .  P i s  auniversa l  cover and our universal 
minimal cover will be a subset of P. Denote the projection of  any set X in E n onto 

xn = 0 by X o. Then if YE a~f-n and Y c  P we have Yo ~ of'n- 1 and Yo c Po where Po 
is the ( n -  1)-dimensional cube whose faces lie in the intersections of the hyperplanes 
xi = + ½, i = 1,2,. . . ,  n - 1, with Xn = 0. Of  the 2 n- 1 faces of  this cube denote 
that which lies in x~ = ½ by F. Yo meets F in precisely one point;  denote this 
point by F(Y).  

Consider the class of sets °2/ congruent to Y which lie in P and can be obtained 
from Y by combining a rotation or reflection which leaves the line 
x~ --- x2 . . . . .  Xn_ ~ = 0 fixed, with a translation perpendicular to this line. 
Let F(g r) be the set of  points formed by F(Y)  for all Y~ q¢. Let F*(q¢) be the 

subset of the points of F(q/) that are most distant from the point (½, 0, . . .  ,0) 
(i.e. the center of face F). Both F (~ )  and F*(~)  are closed non-void sets. I f  

(½, X2, X3, . . . ,  X n _ l ,  0) belongs to F(q¢) so do all the 2 n-2 points 
(½, _+ x2, + x3,. . . ,  +xn-1 ,  0) and they are all the same distance from 
(½,0,0,.. . ,0). Thus there is a point, say (½,x2,x3 . . . .  ,x*_l ,0) ,  of  F*(q/) 
for which x, > 0. Select one such point and let Y* be the set (or one of the 
sets) belonging to q/* such that F(Y*)=(½,x*2,x*a .. . .  ,x,*_~,0). It follows 
from lemma 3 that Y* is the point (½, 0, 0 .. . .  ,0) if and only if Yis a ball. 
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Next let g be a large positive number so that 2(R - 1 /2 ) .  g > K (K is the 
preassigned positive number, R the minimal circumradius of  any projection of  Z), 
and let Pg be the intersection of P with the cone 

2 < (x , ,+g)2 
(1) x 2 + x2 2 + ... + xn-t  (2g + 1 )2 -1  

This cone intersects xn = h in the (n - 1)-dimensional ball with center (0,0 .... ,0, h) 
and radius rh = (h + g)/((2g + 1) 2 - 1) 1/2. Since this radius is large for large 

values of  h it follows that Pg is a universal cover. 
Also the set Pg contains the n-dimensional unit ball with center at 

x , = ½ , x i = O ,  i =  1 . . . . .  n - 1 .  Denote this ball by B*. 
For  each set Yof og'n in P select Y* as described above and translate Y* parallel 

to the x, axis until it lies inside Pg and, subject to this condition, is as close to 
x,  = 0 as possible. Let the translated set be Y**. Let Q be the union of  all these 
sets and let S be the convex cover of  the closure of  Q. Q and (therefore) S are 
bounded. S is a subset of  Pg that meets the hyperplane x, = 0 (since Q ~B*)  
and S also meets the hyperplane x, = K. For  consider where Z** can lie. If  Z** 

lies in x, < K then R < rx, i. e. 

which implies 

R =< (K + g) / ( (2g + 1) 2 -  1) '/z , 

K + g  K 1 
R =< 2(g(g+1)) l /2  = <2g- +-2-" 

Thus 2(R - ½)g < K. But this contradicts our choice of  g. Thus Z** lies at 
least partly in xn ~ K. Hence S lies partly in x~ >= K, and the diameter of S is at 

least K. 
S is a compact universal cover; let Tbe  a subset of S that is a minimal compact 

universal cover• By the same argument as that above Tcontains points in x, > K. 
Now the line L defined by xl = ½, x2 = xa . . . . .  x ,_ l  = 0 meets Q in the 
single point q = (½, 0 , . . .0 ,  ½). Moreover q is the only point of  the closure 
of  Q on L. For  if this were not so let p in Q lie on L, p va q. Then there exists a 
sequence of points pj such that pj E Q and pj ~ q as j ~ ~ .  Then P1 belongs to 
one of  the sets of which Q is the union, say pj ~ Yj**. Now Yj** meets x~ = ½ 
in a single point, say y~, and is moreover contained in an n-dimensional ball of  

radius 1 touching x~ = ½ at y~. If  the distance py~ is tan 0 i, that o fpp j  is greater 

than or equal to sec 0j - 1. 
and thus y~ ~ p as j ~ oo 
Since p has its 2 nd, 3 r~, 

Since pj ~ p as j ~ oo it follows that 0j ~ 0 as j ~ 

• Let  the coordinates of  y~. be (ylU),y2 U),... yn(J)). 
. . . .  ( n -  1 st) coordinates all zero this means that 

y ( j ) ~  0, . . . ,  y ~ l ~  O. Now a subsequence {Y j,} converges to a member, say W, 
of  ~f', and F*(W) is the single point (½,0,0 .. . .  ,0). By the remark concerning 
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Lemma 3, W must be such that all its two-dimensional projections are circles. 
Hence W is an n-dimensional ball, i.e., W ~  B*. Now Yf* is one of the sets of 
which Q is the union and thus Y~*can not  be translated inside Po parallel to 
the x, axis so that it lies nearer to x, = 0. Thus Y],* meets the surface of the 

cone (I). Hence so also does W. Thus in fact W is B*. But if  this is so, Y~* 
converges to B*. Hence y~ converges to q and p is q. 

This contradict ion establishes that the line L meets Q in the single point 

q = ( ~ , 0  .. . .  ,0,½). 
Now S it the convex cover of  Q and Q lies in the set xa < ½, and if xl = ½, 

then 0 __< xi < ½, i = 2, . . . , n - l ,  and it follows that S cannot  meet the line L in 
any point other than q. T is a universal cover and hence contains an n-dimensional 
ball of  radius ½. 

S c P and it follows that S meets the line L. Thus T contains B*. Thus T 
contains the point  (0,. . . ,0).  Hence T has diameter at least equal to K. 

This establishes the required result. 
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